Fuzzy Nonlinear Function Approximation (FNLLA) Model for River Flow Forecasting
نویسنده
چکیده
It is well understood that the limitations of hydrological measurement techniques warrants for modeling of hydrological processes in a basin. However, most hydrologic systems are extremely complex and modeling them with the available limited measurements is a difficult task. The basic purpose of a model is to simulate and predict the operation of the system that is unduly complex, and also to predict the effect of changes on this operation. It is well known, of various hydrological processes, the rainfall-runoff process is the most complex hydrologic phenomenon to comprehend due to tremendous spatial and temporal variability of basin characteristics and rainfall patterns, as well as a number of other variables associated in modeling the physical processes (Tokar and Markus, 2000). The transformation from rainfall to basin runoff involves many hydrologic components that are believed to be highly nonlinear, time varying, spatially distributed, and not easily described by simple models. The artificial neural network (ANN) and Fuzzy Inference System (FIS) approaches are becoming increasingly popular in the context rainfall-runoff modeling due to their various advantages. This Chapter discusses an effective integration of these two models in a different manner.
منابع مشابه
Evaluation of the Neuro-Fuzzy and Hybrid Wavelet-Neural Models Efficiency in River Flow Forecasting (Case Study: Mohmmad Abad Watershed)
One of the most important issues in watersheds management is rainfall-runoff hydrological process forecasting. Using new models in this field can contribute to proper management and planning. In addition, river flow forecasting, especially in flood conditions, will allow authorities to reduce the risk of flood damage. Considering the importance of river flow forecasting in water resources ma...
متن کاملA New High-order Takagi-Sugeno Fuzzy Model Based on Deformed Linear Models
Amongst possible choices for identifying complicated processes for prediction, simulation, and approximation applications, high-order Takagi-Sugeno (TS) fuzzy models are fitting tools. Although they can construct models with rather high complexity, they are not as interpretable as first-order TS fuzzy models. In this paper, we first propose to use Deformed Linear Models (DLMs) in consequence pa...
متن کاملHigh impedance fault detection: Discrete wavelet transform and fuzzy function approximation
This paper presets a method including a combination of the wavelet transform and fuzzy function approximation (FFA) for high impedance fault (HIF) detection in distribution electricity network. Discrete wavelet transform (DWT) has been used in this paper as a tool for signal analysis. With studying different types of mother signals, detail types and feeder signal, the best case is selected. The...
متن کاملA TS Fuzzy Model Derived from a Typical Multi-Layer Perceptron
In this paper, we introduce a Takagi-Sugeno (TS) fuzzy model which is derived from a typical Multi-Layer Perceptron Neural Network (MLP NN). At first, it is shown that the considered MLP NN can be interpreted as a variety of TS fuzzy model. It is discussed that the utilized Membership Function (MF) in such TS fuzzy model, despite its flexible structure, has some major restrictions. After modify...
متن کاملForecasting flow discharge through time series analysis using SARIMA model for drought conditions, a case study of Jamishan River
Nowadays, water supply is more limited and providing water is more difficult due to increasing population and demand for water. Thus, due to rainfall shortage and impacts of drought, the need for forecasting monthly and annual rainfall and flow discharge through time series analysis is acutely felt. One of the key assumption in time series is their static condition. However, hydrological time s...
متن کامل